1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
#if 0
# define TGSOURCE "complex/casinh.c"
#include "_tgmath.h"
#include <complex.h>
#include <math.h>
#include <fenv.h>
TYPE complex TGFN(casinh)(TYPE complex z)
{
int classr = fpclassify(TGFN(creal)(z));
int classi = fpclassify(TGFN(cimag)(z));
int signr = signbit(TGFN(creal)(z));
int signi = signbit(TGFN(cimag)(z));
if (classr == FP_ZERO && classi == FP_ZERO) {
return TGCMPLX(0.0, 0.0);
}
if (classr != FP_INFINITE && !signr && classi == FP_INFINITE) {
return TGCMPLX(INFINITY, NAN);
}
if (classr != FP_INFINITE && classi == FP_NAN) {
return TGCMPLX(NAN, NAN);
}
if (classr == FP_INFINITE && classi != FP_INFINITE && !signi) {
return TGCMPLX(INFINITY, 0.0);
}
if (classr == FP_INFINITE && classi == FP_INFINITE) {
return TGCMPLX(INFINITY, M_PI_4);
}
if (classr == FP_INFINITE && classi == FP_NAN) {
return TGCMPLX(INFINITY, NAN);
}
if (classr == FP_NAN && classi == FP_ZERO) {
return TGCMPLX(NAN, 0.0);
}
if (classr == FP_NAN && classi != FP_INFINITE && classi != FP_ZERO) {
feraiseexcept(FE_INVALID);
return TGCMPLX(NAN, NAN);
}
if (classr == FP_NAN && classi == FP_INFINITE) {
return TGCMPLX(INFINITY, NAN);
}
if (classr == FP_NAN && classi == FP_NAN) {
return TGCMPLX(NAN, NAN);
}
return z;
}
/*d
The casinh functions compute the complex arc hyperbolic sine of z, with branch cuts
outside the interval [−i, +i] along the imaginary axis.
d*/
/*r
The casinh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the interval [−i π /2, +i π /2]
along the imaginary axis.
r*/
/*
STDC(199901)
LINK(m)
*/
#endif
|