1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
#if 0
# define TGSOURCE "complex/cacos.c"
#include "_tgmath.h"
#include <complex.h>
#include <math.h>
#include <fenv.h>
TYPE complex TGFN(cacos)(TYPE complex z)
{
SIGNAL_SAFE(0);
int classr = fpclassify(TGFN(creal)(z));
int classi = fpclassify(TGFN(cimag)(z));
int signr = signbit(TGFN(creal)(z));
int signi = signbit(TGFN(cimag)(z));
if (classr == FP_ZERO && classi == FP_ZERO) {
return TGCMPLX(M_PI_2, 0.0);
}
if (classr == FP_ZERO && classi == FP_NAN) {
return TGCMPLX(M_PI_2, NAN);
}
if (classr != FP_INFINITE && classi == FP_INFINITE) {
return TGCMPLX(M_PI_2, INFINITY);
}
if (classr != FP_ZERO && classr != FP_INFINITE && classi == FP_NAN) {
return TGCMPLX(NAN, NAN);
}
if (classr == FP_INFINITE && signr && classi != FP_INFINITE && !signi) {
return TGCMPLX(M_PI, -INFINITY);
}
if (classr == FP_INFINITE && !signr && classi != FP_INFINITE && !signi) {
return TGCMPLX(0.0, -INFINITY);
}
if (classr == FP_INFINITE && signr && classi == FP_INFINITE) {
return TGCMPLX(3 * M_PI_4, -INFINITY);
}
if (classr == FP_INFINITE && !signr && classi == FP_INFINITE) {
return TGCMPLX(M_PI_4, -INFINITY);
}
if (classr == FP_INFINITE && classi == FP_NAN) {
return TGCMPLX(NAN, INFINITY);
}
if (classr == FP_NAN && classi != FP_INFINITE) {
feraiseexcept(FE_INVALID);
return TGCMPLX(NAN, NAN);
}
if (classr == NAN && classi == FP_INFINITE) {
return TGCMPLX(NAN, -INFINITY);
}
if (classr == NAN && classi == NAN) {
return TGCMPLX(NAN, NAN);
}
return z;
}
/*d
The cacos functions compute the complex arc cosine of z, with branch cuts outside the
interval [−1, +1] along the real axis.
d*/
/*r
The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, π ] along the
real axis
r*/
/*
STDC(199901)
LINK(m)
*/
#endif
|