# define TGSOURCE "complex/catanh.c" #include "_tgmath.h" #include #include #include TYPE complex TGFN(catanh)(TYPE complex z) { SIGNAL_SAFE(0); int classr = fpclassify(TGFN(creal)(z)); int classi = fpclassify(TGFN(cimag)(z)); int signr = signbit(TGFN(creal)(z)); int signi = signbit(TGFN(cimag)(z)); if (classr == FP_ZERO && classi == FP_ZERO) { return TGCMPLX(0.0, 0.0); } if (classr == FP_ZERO && classi == FP_NAN) { return TGCMPLX(0.0, NAN); } if (TGFN(creal)(z) == 1.0 && classi == FP_ZERO) { feraiseexcept(FE_DIVBYZERO); return TGCMPLX(INFINITY, 0.0); } if (classr != FP_INFINITE && !signr && classi == FP_INFINITE) { return TGCMPLX(0.0, M_PI_2); } if (classr != FP_INFINITE && !signr && classi == FP_NAN) { feraiseexcept(FE_INVALID); return TGCMPLX(NAN, NAN); } if (classr == FP_INFINITE && classi != FP_INFINITE && !signi) { return TGCMPLX(0.0, M_PI_2); } if (classr == FP_INFINITE && classi == FP_INFINITE) { return TGCMPLX(0.0, M_PI_2); } if (classr == FP_INFINITE && classi == FP_NAN) { return TGCMPLX(0.0, NAN); } if (classr == FP_NAN && classi != FP_INFINITE) { feraiseexcept(FE_INVALID); return TGCMPLX(NAN, NAN); } if (classr == FP_NAN && classi == FP_INFINITE) { return TGCMPLX(0.0, M_PI_2); } if (classr == FP_NAN && classi == FP_NAN) { return TGCMPLX(NAN, NAN); } return z; } /*d The catanh functions compute the complex arc hyperbolic tangent of z, with branch cuts outside the interval [−1, +1] along the real axis. d*/ /*r The catanh functions return the complex arc hyperbolic tangent value, in the range of a strip mathematically unbounded along the real axis and in the interval [−i π /2, +i π /2] along the imaginary axis. r*/ /* STDC(199901) LINK(m) */